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A variational method is proposed which results in an approximate wave function for an excited 
state which has the maximum overlap with the true excited state eigenfunction. The method involves 
the calculation of the quantities E = (05 ]Hb 05> and A = (05 I (H-  E)21 05>, but is free of the constraint 
that the trial function 05 must remain orthogonal to all states of the same symmetry which lie beneath 
it. One must know, however, an approximation to the true eigenvalue. A discussion is given on how 
one might gain the latter information, lacking knowledge of the spectrum, from the repeated application 
of the method. 

Es wird eine Variationsmethode vorgeschlagen, die auf eine gen~herte Wellenfunktion ftir einen 
angeregten Zustand fiihrt, welche sich maximal mit der wahren Eigenfunktion des angeregten Zu- 
standes iiberlappt. Die Methode ermSglicht die Berechnung der GrSl3en: E =  <051H105> und 
A = (051(H-E)  z[ 05>, ist aber frei yon der Nebenbedingung, dab die Versuchsfunktion 05 orthogonal 
zu allen benachbarten Zust/inden mit derselben Symmetric bleiben mug. - Man will jedoch eine 
N~iherung des wahren Eigenwertes wissen.- Eine Diskussion dariiber, wie man durch wiederholte 
Anwendung der Methode letztere Information gewinnen kann, ohne Kenntnisse tiber das Spektrum 
zu besitzen, wird durchgeftihrt. 

M6thode variationnelle pour la d6termination d'une fonction d'onde d'un 6tat excit6 pr6sentant 
le recouvrement maximum avec la fonction d'onde exacte. La m6thode implique le calcul de E = @1HI05> 
et A = <051(H-E)2105) mais ne comporte pas la contrainte d'orthogonalit6 de la fonction d'essai 05 
5. tousles 6tats inf6rieurs de m~me sym6trie. On doit cependant connaltre une valeur approch6e de 
la valeur propre exacte. Discussion stir la mani6re dont on peut obtenir cette valeur approch6e sans 
connaitre le spectre, par application r6p6t6e de la m6thode. 

t .  Introduction 

F o r  t h e  e x a c t  w a v e  f u n c t i o n  7 / o f  a n  e i g e n s t a t e  t he  f o l l o w i n g  e q u a t i o n s  h o l d ,  

E= IHI = W, (1) 
A = < g' I H2 - Ez[ e >  = 0 (2) 

and if ~ is an eigenstate  with E = W # W', where  W' is the energy of  another  
state of  the same symmetry  with the corresponding  e igenfunct ion ~' ,  then 

(~P] 7 ~'> = 0 .  (3) 

For a trial function ~P, one has E = ( ~  [HI ~> > Wo, where  Wo is the true ground 
s t a t e  ene rgy .  I n d e e d  if  ~P w e r e  c a p a b l e  o f  a t t a i n i n g  t he  exac t  f o r m  of  7/o, t h e  e x a c t  

ground state eigenfunction, one would have E = W o = (7 /o  IH[ k~o). 
Likewise  for a ca lculat ion  of  an excited state, if the trial funct ion ~ is capable 

of  attaining the form of  ~k under a variation,  then a stat ionary state is obtained 
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with E =  Wk= <~klHI ~k>" In both cases the true eigenvalues are obtained by 
finding the stationary value from 6E = 0 for the case of a trial function which can 
become the eigenfunction under variation. 

For an excited state ~k of the same symmetry as the ground state 7%, 
6E=6(4"[H[4">=O is a necessary condition for.finding a stationary value E 
which approximates Wk; but it is not sufficient. One must also take account of 
Eq. (3). Thus with Eqs. (1) and (3), using 4" in place of 7 j, one has necessary and 
sufficient conditions so that 4"--* ~k: 6<4" IH] 4 ' ) =  0 and <4"l 4"0> = o. But the 
condition (4"14"o> = 0 is rather restrictive, especially if 4"o is not a very good 
approximation to 7%. Hence it is desirable to find another approach for excited 
states. 

Weinstein [9] has proposed that for an excited state for which one has a trial 
function 4", which cannot attain the form of an exact wave function, one can 
obtain an approximation to some ~g by minimizing A, where A is given by 
A = <4"I(H - E)21 4">. 

If there exists a 4" such that H4" = W~4" (hence 4, = ~k), then A =0 .  As a corol- 
lary it may be stated that as 4"--, ~k, A --, 0. Hence 4"--, ~k implies that A --, 0. It is 
on this basis that Weinstein suggested that as A ~m in ,  4"~ ~/'k- It will be shown 
below that, if one measures the approach of 4" to ~k by the increase of the value 
of the integral ak = <4"17'k>, the minimization of a does not at all give the best 
approximation to a ~k that can be obtained from a given trial function. 

There are criteria for judging the goodness of 4" as an approximation to ~/'k 
other than that of the maximum ak, but ak provides for the best overall convergence 
of 4" to ~k- Obtaining the maximum ak is equivalent to obtaining the smallest root- 
mean-square deviation of 4" from g'k" AS will be seen below, the other criteria are 
useful for obtaining good approximations to ~k in certain regions of configuration 
space, but since ak provides a criterion for judging the goodness of 4" as an approxi- 
mation to ~k over the entire configuration space, it seems that this criterion 
should be the one used to judge the goodness of 4". Taking this criterion as the 
basic premise it will be shown below that, if one is considering the k th eigenstate, 
the approximate function, 4", which has the maximum overlap with the true eigen- 
function ~t' k is determined by that 4" which 9ires e2/A its stationary value. A is as given 
above and e2 = (E - Wk) 2. 

In Section 2, various criteria of goodness for approximate wave functions are 
considered. This leads to a proposal in Section 3 of the 82/A minimization method 
for the determination of the best approximation to '/'k- In Section 4 the method is 
discussed in terms of the orbital approximation and a connection is made with 
some recent work on upper and lower bounds to eigenvalues [4]. In the last 
section the method, formulated in the orbital approximation, is applied to some 
excited states of He. The wave functions are used to calculate the expectation 
values of a few operators in order to judge their validity. 

2. Criteria of Goodness for Approximate Wave Functions 

In this section, a generalization is presented of an analysis first given by 
H. M. James and A. S. Coolidge [3] for the ground state of an electronic system. 
Here the method will be extended to apply to excited states as well. 
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Let 4 be an approximate  normalized wave function and E = <41HI 4)) its 
associated energy. Also let 

4 = 2 a i  7~i = 2 ai ~ i  + ak ~ k  ; (4) 
i i:P-k 

nOW 

( 4  - ak 7Jk) = ~ ai }Pi (5) 
i ~ k  

will give the deviat ion of  4 from the exact function 7~k . A deviation function can 
then be defined, 

4~ (1 : --~ = --ak) ~(4--akgJk) (6) 

where ak = (kUk[ 4 ) .  Hence one m a y  write 

4 = ak ~k + a~ 4 x (7) 

where a~ = ( 1 -  a2) ~ measures the amoun t  of the deviation function 4x which 
appears  in 4.  As criteria of  the inaccuracy of  4 there are: Q, the root -mean-square  
error in 4 

Q = < 4  - ~k 14 - 7,k>~ (8) 

e, the energy error  

e = E - W k (9) 

and A ~, the root -mean-square  local energy deviation 

A ~ = ( 4  I(H - E) 21 4 )  ~ �9 (10) 

One may  also define the quantities 

E x = <4~[nl  4 x > ,  ex = E ~ -  W k 
and 

If the inequality 

A~ = <4~ I(H - E)el 4x>.  
(11) 

< 4x I I - ( H  - E) - (Ex - E)221 4~> ___ 0 

is considered and the integral is expanded in terms of the above defined quantities, 
one finds 

2 2 (4x[H214x}-2ExE + E -Ex + 2E~E-E2>=O 
thus, 

<4~; IH21 4~> - 2E~E + E 2 >__ E 2 - 2 E ~ E  + E 2 ; 

but the left hand  side is merely Ax, hence 

A~ >__ (E~- E) 2. (12) 

F r o m  the definitions ofex and e given above, it can be shown that  (Ex - E) 2 = (e~-  ~)2 
hence A x > ( e~ -  ~)2 Thus  one m a y  define a quant i ty  K 2, 

K 2 -- Ax > i (13) 
( e ~ -  ~)~ = " 
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Now substituting Eq. (7) into Eqs. (8)--(10) it follows that 

O 2 = 2[1 - ak] = 2[1 -- (1 -- a~)~], (14) 

= a~ex, (15) 

A =e2 + a2(Ax _e2).  (16) 

From the first equality of Eq. (14) one finds the justification of the statement 
made in the introduction that obtaining the maximum a k is equivalent to obtaining 
the smallest root-mean-square deviation. 

Eliminating a x between Eqs. (14) and (15) one finds 

Q2 1 4 - ~ -  Q = a 2 = e/e~ (17) 

or if q5 is a fairly good approximation to 7' k (i.e., if e is small when compared to 
IWk-- Wk-~[ and IWk-- Wk+ 11), then 

Q2 ~ e/ex. (18) 

Eliminating a~ between Eqs. (15) and (16) one obtains 

A = gig + (A x - g2)/gx] (19) 

and assuming again that cb is a fairly good approximation to 7' k, it follows that 

A/Ax ~- e/e~ or A ~-- ggx  K 2  . (20) 

Now, making use of Eqs. (18) and (20), one obtains the result 

This equation interrelates the various criteria considered. Again it should be 
emphasized that theoretically the criterion which should be used to judge the over- 
all quality of a wave function is the criterion of minimum Q2 (i.e., maximum ak). 

Before proceeding to investigate Eq. (21), each of the quantities in this equation 
must be studied in order to understand its consequences and enable one to proceed 
to a method for determining the best 4) to approximate 7' k. 

3. Determinat ion  of  the Best  Approx imat ion  to ~Pk 

Assume first that one has a function ~. One may then, according to Eqs. (8) 
to (10), judge its accuracy. It should be noted that in applying these formulae 
Eq. (8) requires a knowledge of the true wave function. This is not available, of 
course, except for the very simplest systems; thus Eq. (8) is impractical from this 
point of view. 

In order to use Eq. (9) one must know the true eigenvalue Wk; however for this 
quantity the experimentally determined energy for this state may be used, if it has 
been measured. Thus this method of judging accuracy usually will be available. 

Finally, Eq. (10) makes no use of information other than that contained in 4). 
Although this seems to be a favourable aspect of Eq. (10) it must be realized that 
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one is only finding the local energy deviation on the basis of 4~ without regard to 
any external standard. 

The three criteria have now been considered assuming that a 4~ had somehow 
been obtained. A more important  question is whether the criteria can be used to 
determine a 4~. 

From this point of view Eq. (8) is useless; because if 7Jk is known, why should 
one want to obtain an approximation to it? Eq. (9) can be used to obtain a ~, if one 
assumes that 4~ is the function which minimizes e. That is, a ~b must be found such 
that 6e = 0. For  the ground state this is nothing more than the familiar variational 
principle. Eq. (9) is incapable however of giving a �9 which is an approximation to 
an excited state which has the same symmetry as the ground state. 

Considering Eq. (10) one must find the 4~ which will minimize A. It is the only 
one of the criteria which, taken alone, can yield a 4) for the ground state or any 
excited state. This is the basis for Weinstein's method for determining an approxi- 
mate wave function, but referring again to Eq. (21), it is obvious that Weinstein's 
idea of minimizing A does not give the minimum Q2 and thus this method cannot 
give the best overall approximation to 7~k. Thus looking at each of the three 
criteria individually and demanding that Q2 be a minimum, an impasse seems to 
be reached. This impasse will be resolved by the use of Eq. (21). But first, brief 
consideration will be given to the types of error in the wave function which are 
reduced by minimization of A and the minimization of E; here the discussion given 
by James and Coolidge [3] is important. 

In minimizing A the "local energy error" is minimized I-3, 7]. That is, the 
errors in the wave function associated with the closeness of the electrons will be 
minimized. Thus the wave function which results from this type of minimization 
would be expected to give good values for properties which describe phenomena 
where the particles are close together. 

In minimizing E, which can be done only for the ground state or lowest state 
of a given symmetry, "long range errors" are minimized [2, 3, 71. Thus a wave 
function determined on this basis should be good for describing properties such as 
the radial density or diamagnetic susceptibility where long range errors are 
important. Thus by minimizing E or A, a wave function is obtained which has 
minimum error in certain regions of configuration space, rather than the minimum 
error over the whole of configuration space. 

Now returning to Eq. (21) one may ask how one might obtain a wave function 
for an excited state which satisfies the criteria of minimum Q2. From the derivation 
of Eq. (21) it was found that K 2 > 1, according to Eq. (13). Thus if the right hand 
side of Eq. (21) is to be minimized, the smallest value K 2 c a n  take is 1. Thus in 
order to obtain the minimum Q2, the quantity e2/A should be minimized. This 
method allows the determination of an excited state wave function which minimizes 
Q2 without a knowledge of the exact 7~k. This seems to be the first time that this 
procedure has been proposed as a method for obtaining approximations to 
excited state wave fimctions. 

On the basis of the new method just proposed above, it is now known how to 
obtain a �9 which is the best approximation to a T k. It should be noted that the 4~ k 
obtained by this method for the case of a ground state need not give as good an 
approximation to I'I'o as could be obtained by minimizing E; likewise it need not 
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give as small a value for A as would be obtained by minimizing A ; however unlike 
the minimization of A or E it does give the minimum QZ which is the chosen 
criterion for the best ~bk .1 

4. The Minimization of ~2/A 
Returning to Eq. (21) and considering the discussion given in the last section 

the trial function which has the maximum overlap with the true eigenfunction 
must be such that the variation in Q2 should vanish. Hence one may write 

g 
6Q 2 = 6E - - f ~  6A = 0 (22) 

or in a more condensed form, 

6 Q 2  = 6E + colA = 0, (23) 

where co is the constant quantity in Eq. (22). Recently a variational method for 
obtaining upper and lower bounds based on the use of the Temple-Kato formulae 
has been proposed [4] and the formulation in terms of the orbital approximation 
given. In that paper it is shown that the best bound, B, is given by the function 
which satisfies 

6B = 6E + co'6A = 0. (24) 

Hence these two methods differ only in the value of the coefficient o f6A .  In terms 
of the orbital approximation one may completely carry over the formalism of [-4] 
to the present case with the exception that co' of [4] must everywhere be replaced 
by co as given in Eq. (22). co enters into the formalism as a factor in the general 
coupling operators as given in [4]. Hence there is no need to repeat the formalism 
here. 

In the next section the formalism of [-4] will be applied, with the value of co as 
given in Eq. (22), to the calculation of wave functions for the J,3p (is, 2p) and 
1,3p (ls, 3p) states of the He atom. 

5. Results on Some Excited States of He 

The basis functions for the calculations on the excited states were taken as 

- (2t/s)-~ (2t/sr) "-1 exp(-r/$r) Yo, o(O, q~) (25) 
)~s,, (n+ 1)!2,+1 

_ (2nv) ~ 
Zp,, (n + 1)! 2 "+ 1 (2r/pr)" exp( -qvr  ) Yl,~t(8, 4)) (26) 

1 It should be noted that care may have to be taken in this procedure. For excited states one is 
interested in obtaining a stationary value of e2/A which is not only consistent with e2/A ~ O, but also 
with e 2 ~ 0  and a ~ 0 .  These are necessary conditions such that ~--* ~k' 

The min imum value, 82/A = 0, could be obtained in two ways which are of no physical interest, 
namely, when either ~2 = 0 and A remains finite, or when ~2 is finite and A becomes infinite; it is obvious 
that the wave functions associated with these particular eZ/A values are useless. It is useful therefore 
to check that both ~2 and A remain small when a search is being made for the stationary value of 
e2/A ; otherwise the wrong part of the hypersurface may be searched and a meaningless function ob- 
tained. 

These problems were not encountered for the calculations presented here. 
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where the Zs,. are the basis function for the s orbital and the Zp,. those for the p 
orbital. The s and p orbitals were each represented by four basis functions in the 
following way 

4 

~bs = ~ C.,. X . . . .  (27) 
n = l  

5 

cPv = Z Cv,. Zv,., (28) 
n = 2  

where the trial function may be written as 

4~ 1'3 = 1/V2[q~(1 ) q~v(2) +_ q~.(1) ~b~(2)]. (29) 

Using the method described by Messmer and Birss [4], with the modification 
mentioned in the last section, the trial function which satisfies Eq. (23) has been 

Table 1. Excited state wave functions - 82/A minimization method 

n t 1 c n n r I c n 

1p ls 2p 

1 2.25 0.83850 2 0.668 0.41858 
2 2.25 0.16110 3 0.668 0.44990 
3 2.25 0.02780 4 0.668 0.02159 
4 2.25 -0 .00146 5 0.668 0.17857 

3p ls  2p 

1 1.86 1.11008 2 0.700 0.71746 
2 1.86 --0.14467 3 0.700 -0 .10578 
3 1.86 0.01676 4 0.700 0.46560 
4 1.86 0.00726 5 0.700 --0.00067 

1p ls  3p 

1 1.68 1.29512 2 0.354 --1.31116 
2 1.68 --0.42127 3 0.354 1.29494 
3 1.68 0.10502 4 0.354 0.62949 
4 1.68 -0 .01848 5 0.354 -0 .00507 

3p ls 3p 

1 2.45 0.73860 2 0.436 - 1.20234 
2 2.45 0.23844 3 0.436 1.48308 
3 2.45 0.03785 4 0.436 -0 .78487 
4 2.45 0.03638 5 0.436 1.14108 

determined. It has further been optimized with respect to t/s and t/p. The resulting 
wave functions for the ap(ls 2p), 3p(ls 2p), 1p(ls 3p) and 3P(ls 3p) states of He 
are presented in Table 1. 

In order to demonstrate the validity of the thesis that the wave functions 
obtained by the minimization of e2/A should be the best functions over the whole 
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of configuration space, some expectation values have been calculated for these 
functions. If the trial function is designated as 4~, the expectation values calculated 
are given as 

E = (4~IHI~), (30) 

( 1 / r )  = y 1/r i , (31) 

( r )  = 5 -  r, ~ , (32) 

( r  2) = -~- r , (33) 

where r i is the distance of the ith electron from the nucleus. In Table 2 a comparison 
is made of the expectation values calculated from the wave functions of Table 1 
with those calculated from variational wave functions obtained by other methods. 
The other wave functions are: 1) B L - those obtained by Messmer and Birss [-5] 
which give the best lower bound to the eigenvalue; 2) E - those determined by the 
ordinary variational principle; 3)"Exact"  - those determined by Schiff et  al. [8-1 
using 560 terms of a Pekeris type expansion. Comparing the values in the first 
three columns of Table 2 with those of the fourth column, it is readily seen that the 
e2/A wave functions give the best overall accuracy;indeed the only value predicted 
better by the variational principle is that of the energy and the difference there is in 
the fifth decimal place. 

Table 2. Comparison of expectation values calculated from various wave function 

B L E eE/A Exact 

1p ls 2p 

- E  2.07204 2.12246 2.12243 2.12384 
(1/r) 1.0457 1.1194 1.1229 1.12318 
( r )  6.134 2.9469 2.9223 2.91068 
(r  z) 83.87 16.175 15.878 15.76565 

3p is 2p 

- E  2.07537 2.13134 2.13132 2.13316 
(1/r) 1.0490 1.1309 1.1335 1.13324 
( r )  6.185 2.7004 2.6813 2.67396 
(r  2) 75.54 13.417 13.245 13.21174 

A similar comparison is given for the 1p  ls 3p and 3p ls 3p states of He in 
Table 3. For  these states, however, the ordinary variational principle cannot be 
used and a method due to Davidson [1] was employed to determine wave functions 
which yielded the values listed under E. The other symbols have the same signi- 
ficance as in Table 2, with the addition that B u lists the results obtained from the 
wave functions determined in some recent upper bound calculations [--5]. Again 
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the m e t h o d  involv ing  the min imiza t i on  of  ~2/A seems to give the  best  overal l  
agreement  wi th  the "Exac t"  values  of  the ope ra to r s  considered.  

In  the  ca lcu la t ions  desc r ibed  here Wk was a p p r o x i m a t e d  by  the exper imenta l  
energy of  the k th state. However ,  in some cases exper imenta l  in fo rmat ion  m a y  no t  
be ava i lab le ;  it  wou ld  then be des i rable  to have an ent i re ly  a priori way of  deter-  
min ing  a ~k" One  such poss ib le  way  of de t e rmin ing  ~k would  be to cons ider  the 
Wk as a var iab le ;  one w o u l d  then min imize  e2/A for each value of  Wk and  the 
des i red  ~k would  be tha t  funct ion which gave the smal les t  value  of  the min imized  
eZ/A's. Care  wou ld  have  to be exercised since the min imized  e2/A values would  
cer ta in ly  show mul t ip le  m i n i m a  when cons idered  as a funct ion of  Wk. Thus  a 
rough  es t imate  of  Wk would  be highly  desirable .  An  inves t iga t ion  of  this p r o b l e m  
will be unde r t aken  in the  nea r  future. 

Table 3. Comparison of expectation values calculated from various wave functions 

B L B v E e2/A Exact 

1p ls 3p 

- E  2.03844 2.07062 2.05473 2.05472 2.05515 
( l / r )  1.0448 1.0229 1.0547 1.0528 1.05497 
(r) 6.122 12.055 6.720 6.695 6.67954 
(r 2) 86.77 296.20 92.81 92.16 91.8727 

3p ls 3p 

- E  2.03999 2.07374 2.05750 2.05745 2.05808 
( l / r )  1.0474 1.0239 1.0570 1.0597 1.05802 
(r)  6.302 11.574 6.364 6.332 6.32113 
(r z) 88.48 268.22 82.96 82.15 82.1098 

Final ly ,  the p r o b l e m  of  the in tegrals  involved  in ca lcula t ing  A shou ld  be 
ment ioned .  Ana ly t i ca l  forms for all integrals ,  over  Slater  basis functions,  involved  
in A for a t o m s  are  now ava i lab le  [6]. However ,  the extension of  any  m e t h o d  
involv ing  A to a many-e lec t ron ,  many-cen te r  p r o b l e m  presents  cons iderab le  
difficulties because  of  the n u m b e r  of  new integrals  in t roduced .  M u c h  work  on 
a tomic  systems will have to  be done  in o rde r  to de te rmine  the need and  des i rab i l i ty  
of  t ack l ing  the in tegrals  necessary  to ca r ry  out  ca lcula t ions  on molecules.  
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